The table of values below represent an exponential function. Write an exponential equation that models the data

The table of values below represent an exponential function Write an exponential equation that models the data class=

Respuesta :

Answer:

Option b is correct.

The exponential function is, [tex] y=10.78 \cdot (0.7)^x[/tex]

Explanation:

Exponential Function:

An exponential fuction is  [tex]f(x)=ab^x[/tex], ......[1] ; where a≠0 and b is the base with b>1 and x is any real number.

Consider any two points from the given table (0, 10.78) and (1, 7.546).

To find the value of a and b by substituting these points in equation [1];

For point (0, 10.78)

we have,  

x = 0  and b = 10.78

then,  

[tex]10.78 = a \cdot b^0[/tex]

or

[tex]10.78 = a[/tex] or

∴ a = 10.78

Similarly, for point (1, 7.546)

we have; x = 1 and y = 7.546

[tex]7.546 = a \cdot b^1[/tex]

or

7.546 = ab   or

ab = 7.546

Substitute the value of a = 10.78 in above equation to solve for b;

[tex]10.78 \cdot b = 7.546[/tex]

Divide both side by 10.78 we get

[tex]\frac{10.78}{10.78} \cdot b = \frac{7.546}{10.78}[/tex]

Simplify:

b = 0.7

Therefore, the exponential function for the given data is;   [tex]y=10.78(0.7)^x[/tex]



Ver imagen OrethaWilkison

It's B, just took the quiz :)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE