Respuesta :

Answer-

The equations of the locus of a point that moves so that its distance from the line 12x-5y-1=0 is always 1 unit are

[tex]12x-5y+14=0 \\ 12x-5y-14=0[/tex]

Solution-

Let a point which is 1 unit away from the line 12x-5y-1=0 is (h, k)

The applying the distance formula,

[tex]\Rightarrow \left | \frac{12h-5k-1}{\sqrt{12^2+5^2}} \right |=1[/tex]

[tex]\Rightarrow \left | \frac{12h-5k-1}{\sqrt{169}} \right |=1[/tex]

[tex]\Rightarrow \left | \frac{12h-5k-1}{13} \right |=1[/tex]

[tex]\Rightarrow 12h-5k-1=\pm 13[/tex]

[tex]\Rightarrow 12h-5k=\pm 14[/tex]

[tex]\Rightarrow 12h-5k=14,\ 12h-5k=-14[/tex]

[tex]\Rightarrow 12h-5k-14=0,\ 12h-5k+14=0[/tex]

[tex]\Rightarrow 12x-5y-14=0,\ 12x-5y+14=0[/tex]

Two equations are formed because one will be upper from the the given line and other will be below it.

Ver imagen InesWalston
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE