Respuesta :

Alright, lets get started.

[tex]-\frac{2}{3} (2x-\frac{1}{2} )\leq \frac{1}{5}x -1[/tex]

Distributing [tex]-\frac{2}{3}[/tex] into parenthesis

[tex]-\frac{4x}{3}+ \frac{2}{6} \leq \frac{x}{5} -1[/tex]

[tex]-\frac{4x}{3}+ \frac{1}{3} \leq \frac{x}{5} -1[/tex]

Subtracting [tex]\frac{1}{3}[/tex] from both sides

[tex]-\frac{4x}{3}+ \frac{1}{3}- \frac{1}{3}\leq\frac{x}{5}-1- \frac{1}{3}[/tex]

[tex]-\frac{4x}{3} \leq \frac{x}{5}- \frac{4}{3}[/tex]

Adding [tex]\frac{4}{3}[/tex] in both sides

[tex]-\frac{4x}{3}+ \frac{4}{3} \leq \frac{x}{5} -\frac{4}{3}+ \frac{4}{3}[/tex]

[tex]-\frac{4x}{3} +\frac{4}{3} \leq \frac{x}{5}[/tex]

Adding [tex]\frac{4x}{3}[/tex] in both sides

[tex]-\frac{4x}{3} +\frac{4}{3} +\frac{4x}{3} \leq \frac{x}{5} +\frac{4x}{3}[/tex]

[tex]\frac{4}{3} \leq \frac{x}{5} +\frac{4x}{3}[/tex]

Making common denominator, adding fractions

[tex]\frac{4}{3} \leq \frac{23x}{15}[/tex]

It means

[tex]23x\geq \frac{4*15}{3}[/tex]

[tex]23x\geq 20[/tex]

Dividing 23 in both sides

[tex]x\geq \frac{20}{23}[/tex]

In interval notation

[[tex]\frac{20}{23}[/tex],∞)

This is the answer

Hope it will help :)


ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE