Respuesta :

Answer:

B. 1/(m-4)(m-3)



Answer:

[tex]\frac{1}{(m-3)(m-4)}[/tex]

Step-by-step explanation:

(m+3/m^2-16)/(m^2-9/m+4)

Lets factor the numerator and denominator

use identity a^2 - b^2 = (a+b)(a-b)

[tex]m^2 - 16= m^2 - 4^2 = (m+4)(m-4)[/tex]

[tex]m^2 - 9= m^2 - 3^2 = (m+3)(m-3)[/tex]

we have divisiion sign in  between, change the division symbol in to multiplication symbol by flipping the fraction in the denominator

(m+3/m^2-16)*(m+4/m^2-9)

[tex]\frac{m+3}{(m+4)(m-4)} * \frac{m+4}{(m+3)(m-3)}[/tex]

Cancel put m+3  and m+4  at the top and botom

[tex]\frac{1}{(m-3)(m-4)}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE