Respuesta :

There are two ways you can approach this:

1) Factor [tex]\frac{5(x-1)(x+3)}{x+5}[/tex] this equals to [tex]\frac{5x^2+10x-15}{x+5}[/tex]

2) or divide which equals to 5x+35+[tex]\frac{160}{x+5}[/tex]

ANSWER
The remainder is
[tex]60[/tex]

EXPLANATION

Let

[tex]p(x) = 5 {x}^{2} + 10x - 15[/tex]

We shall apply the remainder theorem to obtain the remainder when
[tex]p(x)[/tex]
is divided by
[tex]x + 5[/tex]

According to the remainder theorem, if a polynomial
[tex]p(x)[/tex]
is divided by
[tex]x - a[/tex]
then the remainder is
[tex]p(a)[/tex]


So we set
[tex]x + 5 = 0[/tex]

and solve for
[tex]x[/tex]

to obtain,

[tex]x = - 5[/tex]


We now substitute -5 into the given polynomial to find the remainder.



[tex]p( - 5) = 5 {( - 5)}^{2} + 10( - 5) - 15[/tex]


This gives us,

[tex]p( - 5) = 5(25) - 50 - 15[/tex]

This will simplify to,

[tex]p( - 5) = 125 - 50 - 15[/tex]



[tex]p( - 5) = 60[/tex]


Therefore the remainder is
[tex]60[/tex]
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE