Respuesta :

Given coordinates (0,0)  and (34,-78).

[tex]\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

[tex]We \ have\ x_1=0, x_2=34, y_1=0 \ and \ y_2=-78.[/tex]

[tex]\mathrm{The\:distance\:between\:}\left(0,\:0\right)\mathrm{\:and\:}\left(34,\:-78\right)\mathrm{\:is\:}[/tex]

[tex]=\sqrt{\left(34-0\right)^2+\left(-78-0\right)^2}[/tex]

[tex]=2\sqrt{1810}[/tex]

Distance = 2(42.544) ≈ 85.09.

Therefore, distance from the origin (0,0) to the point (34,-78) is [tex]2\sqrt{1810} \ or[/tex] 85.09 units.


ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE