Respuesta :
Answer-
The standard error of the confidence interval is 0.63%
Solution-
Given,
n = 2373 (sample size)
x = 255 (number of people who bought)
The mean of the sample M will be,
[tex]M=\frac{x}{n} =\frac{255}{2373} =0.1075[/tex]
Then the standard error SE will be,
[tex]SE=\sqrt{\frac{M\times (1-M)}{n}}[/tex]
[tex]SE=\sqrt{\frac{0.1075\times (1-0.1075)}{2373}}=\sqrt{\frac{0.0959}{2373}}=0.0063=0.63\%[/tex]
Therefore, the standard error of the confidence interval is 0.63%
The standard error of the confidence interval is given by the relation [tex]\sqrt\frac{pq} {n} [/tex] is 0.64%
Given the Parameters :
- Sample size = 2373
- x = 255
The value of p = [tex]\frac{x} {n} = \frac{255} {2372} = 0.1075[/tex]
- q = 1 - p ; q = 1 - 0.1075 = 0.8925
Plugging the values into the equation :
[tex]\sqrt\frac{pq} {n} = \sqrt\frac{(0.1075 \times 0.8925)} {2373} = 0.0063585 [/tex]
Therefore, the standard error of the confidence interval expressed as a percentage is (0.0063585 × 100%) = 0.64%
Learn more : https://brainly.com/question/18219471