Can somebody show me how to do this?

notice, we'll be using the LCD of all denominators, in this case the LCD is 3, that way we do away with the denominators, but first let's distribute that 4.
[tex]\bf \cfrac{1}{3}h-4\left( \cfrac{2}{3}h-3 \right)=\cfrac{2}{3}h-6\implies \cfrac{h}{3}-4\left( \cfrac{2h}{3}-3 \right)=\cfrac{2h}{3}-6 \\\\\\ \cfrac{h}{3}-\stackrel{\textit{distributing}}{\left( \cfrac{8h}{3}-12 \right)}=\cfrac{2h}{3}-6\implies \cfrac{h}{3}-\cfrac{8h}{3}+12 =\cfrac{2h}{3}-6 \\\\\\ \textit{now, let's multiply both sides by }\stackrel{LCD}{3}\textit{ to do away with the denominators}[/tex]
[tex]\bf 3\left( \cfrac{h}{3}-\cfrac{8h}{3}+12 \right)=3\left( \cfrac{2h}{3}-6 \right)\implies h-8h+36=2h-18 \\\\\\ -7h+36=2h-18\implies 36+18=2h+7h\implies 54=9h \\\\\\ \cfrac{54}{9}=h\implies 6=h[/tex]