Respuesta :

Answer:

The minimum frequency required to ionize the photon is 111.31 × [tex]10^{37}[/tex] Hertz

Given:

Energy = 378 [tex]\frac{kJ}{mol}[/tex]

To find:

Minimum frequency of light required to ionize magnesium = ?

Formula used:

The energy of photon of light is given by,

E = h v

Where E = Energy of magnesium

h = planks constant

v = minimum frequency of photon

Solution:

The energy of photon of light is given by,

E = h v

Where E = Energy of magnesium

h = planks constant

v = minimum frequency of photon

738 × [tex]10^{3}[/tex] = 6.63 × [tex]10^{-34}[/tex] × v

v = 111.31 × [tex]10^{37}[/tex] Hertz

The minimum frequency required to ionize the photon is 111.31 × [tex]10^{37}[/tex] Hertz


Explanation:

Relation between energy and frequency is as follows.

                     E = [tex]h \nu[/tex]

where,   E = energy

              h = planck's constant = [tex]6.626 \times 10^{-34}[/tex] Js

          [tex]\nu[/tex] = frequency

As it is given that value of energy is 738 kJ/mol.

          E = [tex]\frac{738 \times 1000 J}{6.022 \times 10^{23}}[/tex]

             = [tex]1.22 \times 10^{-18}[/tex] J

Hence, putting the given values into the above formula as follows.

                      E = [tex]h \nu[/tex]

    [tex]1.22 \times 10^{-18}[/tex] J = [tex]6.626 \times 10^{-34} Js \times \nu[/tex]  

                    [tex]\nu[/tex] = [tex]1.84 \times 10^{15}[/tex] per second

Thus, we can conclude that [tex]1.84 \times 10^{15}[/tex] per second is the minimum frequency of light which is required to ionize magnesium.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE