Respuesta :

Answer : The longest wavelength of light that could ionize an atom of thallium is  2.0314 × [tex]10^{-7}[/tex] m.

Solution : First we will calculate  the ionization energy for 1 atom of thallium.

As we know that, one mole of any element contains 6.022 × [tex]10^{23}[/tex] atoms as given by the Avogadro's number.

The energy needed to ionize 1 atom of of thallium = [tex]\frac{589.3 \text{ KJ/mol}}{6.022\times 10^{23}\text{ atoms}}\times 1 \text{ mole of thallium}[/tex]

                                                                                     = 97.8578 × [tex]10^{-23}[/tex]

                                                                                     = 9.7857 × [tex]10^{-22}[/tex] KJ/atom

As we know that the energy of a photon is directly proportional to the frequency which is given by the Planck equation.

       E =  h  ×  ν  

       ν =  [tex]\frac{E}{h}[/tex]          ........... (1)

here,   E → the energy of the photon

           ν → frequency

           h → Planck's constant is equal to 6.626 × [tex]10^{-34}[/tex] JS

Put the values of E and h in equation (1) , we get

    [tex]\nu=\frac{E}{h}[/tex] = [tex]\frac{9.7857 \times10 ^{-22}\times 10^{3} \text{ J}}{6.626\times 10^{-34}\text{ JS}}[/tex]

                = 1.4768 × [tex]10^{15}\ S^{-}[/tex]

Now the frequency of a photon is inversely proportional to the wavelength .i.e

              [tex]\nu = \frac{C}{\lambda}[/tex]      ............(2)

 here,   λ  →   wavelength of photon

            C  →   speed of light is equal to 3 × [tex]10^{8} \text{ m} S^{-}[/tex]

 Now put the values of of C and λ in equation (2) , we get

          [tex]\lambda = \frac{3\times 10^{8} \text{ m} S^{-}}{1.4768 \times  10^{15}S^{-}}[/tex]

                                 = 2.0314 × [tex]10^{-7}[/tex] m




ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE