Respuesta :
So firstly, divide both sides by pi: [tex] \frac{V}{\pi } =\frac{4}{3} r^3 [/tex]
Next, multiply both sides by 3/4: [tex] \frac{3V}{4\pi}=r^3 [/tex]
Next, cube root both sides of the equation and your answer will be [tex] \sqrt[3]{\frac{3V}{4\pi}}=r [/tex]
Answer: [tex]r=\sqrt[3]{\dfrac{3}{4\pi}V}[/tex]
Step-by-step explanation:
The given formula :-
[tex]V=\dfrac{4}{3}\pi r^3[/tex]
Multiply 3 on both sides and divide [tex]4\pi[/tex] on both sides , we get
[tex]r^3=\dfrac{3}{4\pi}V[/tex]
Taking cube-root on both sides, we get
[tex]r=\sqrt[3]{\dfrac{3}{4\pi}V}[/tex]
Therefore, the formula for r is [tex]r=\sqrt[3]{\dfrac{3}{4\pi}V}[/tex].