contestada

How do you simplify this expression with an answer in positive exponential notation? Please provide the process. Thank you!

How do you simplify this expression with an answer in positive exponential notation Please provide the process Thank you class=

Respuesta :

[tex] \bf ~~~~~~~~~~~~\textit{negative exponents}
\\\\
a^{-n} \implies \cfrac{1}{a^n}
\qquad \qquad
\cfrac{1}{a^n}\implies a^{-n}
\qquad \qquad
a^n\implies \cfrac{1}{a^{-n}}
\\\\
-------------------------------\\\\
8^{-2}\cdot \cfrac{3^0-8^{-3}}{4^{-5}}\implies 8^{-2}\cdot \cfrac{1-\frac{1}{8^3}}{\frac{1}{4^5}}\implies 8^{-2}\cdot \cfrac{1-\frac{1}{(2^3)^3}}{\frac{1}{(2^2)^5}} [/tex]


[tex] \bf 8^{-2}\cdot \cfrac{\quad \frac{512-1}{2^9}\quad }{\frac{1}{2^{10}}}\implies (2^3)^{-2}\cdot \cfrac{\quad \frac{511}{2^9}\quad }{\frac{1}{2^{10}}}\implies 2^{-6}\cdot \cfrac{511}{2^9}\cdot \cfrac{2^{10}}{1}
\\\\\\
2^{-6}\cdot \cfrac{511\cdot 2^{10}}{2^9}\implies 2^{-6}\cdot 511\cdot 2^{10}\cdot 2^{-9}\implies 2^{-6}\cdot 511\cdot 2^{10-9}
\\\\\\
2^{-6}\cdot 511\cdot 2\implies 511\cdot 2^{-6}\cdot 2\implies 511\cdot 2^{-6+1}\implies 511\cdot 2^{-5}
\\\\\\
511\cdot \cfrac{1}{2^5}\implies \cfrac{511}{32} [/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE