Respuesta :
[tex] \sqrt{5x} [/tex] + √6 = √9
The first step is to get [tex] \sqrt{5x} [/tex] by itself. We can do this by subtracting [tex] \sqrt{6} [/tex] from each side, and simplifying [tex] \sqrt{9} [/tex]
[tex] \sqrt{5x} [/tex] = 3 - [tex] \sqrt{6} [/tex]
Now we square both sides
5x = (3 - [tex] \sqrt{6} [/tex])²
Using the formula (a - b)² = a² -2ab + b², (3 - [tex] \sqrt{6} [/tex])² = 15 - 6[tex] \sqrt{6} [/tex]
5x = 15 - 6[tex] \sqrt{6} [/tex]
x = [tex] \frac{15 - 6\sqrt{6}}{5} [/tex]
Next time please include the directions: "Solve this equation for x."
First, subtract √6 from both sides, obtaining √5*x = √9 - √6.
Next, divide both sides by √5:
√9 - √6
x = ----------------
√5
Altho' this is the answer, it's best to rationalize the denominator:
√9 - √6 √5 √5(√9 - √6)
x = ---------------- * ------- = -------------------- (best answer)
√5 √5 5