[tex] \bf \stackrel{1}{i^0}\cdot \stackrel{i}{i^1}\cdot \stackrel{-1}{i^2}\cdot \stackrel{-i}{i^3}\cdot \stackrel{1}{i^4}\implies i\cdot i\cdot 1\implies i^2\implies -1 [/tex]
I hope you are trying to write
[tex] i^0*i^1*i^2*i^3*i^4 [/tex]
Now, [tex] i^0=1 [/tex] Because any number to exponent 0 always result 1.
[tex] i^1=i [/tex] Any number to exponent 1 will result the same number.
[tex] i^2= -1 [/tex] By using the property of imaginary number.
[tex] i^3= i^2*i =(-1)*i= -i [/tex]
[tex] i^4=i^2*i^2=(-1)*(-1)=1 [/tex]
Now we can plug in these values in the given expression to get the value of the expression. So,
[tex] i^0*i^1*i^2*i^3*i^4 [/tex]
=[tex] 1*i*(-1)*(-i)*1 [/tex]
=[tex] i^2 [/tex]
=-1
So, -1 is the correct choice.