Rewrite the rational exponent as a radical by extending the properties of integer exponents.

11 to the two fifths power over 11 to the one fourth power

Respuesta :

[tex] \bf ~~~~~~~~~~~~\textit{negative exponents}
\\\\
a^{-n} \implies \cfrac{1}{a^n}
\qquad \qquad
\cfrac{1}{a^n}\implies a^{-n}
\qquad \qquad
a^n\implies \cfrac{1}{a^{-n}}
\\\\\\
\textit{also recall that }a^{\frac{ n}{ m}} \implies \sqrt[ m]{a^ n}
\qquad \qquad
\sqrt[ m]{a^ n}\implies a^{\frac{ n}{ m}}
\\\\
------------------------------- [/tex]


[tex] \bf \cfrac{11^{\frac{2}{5}}}{11^{\frac{1}{4}}}\implies 11^{\frac{2}{5}}\cdot 11^{-\frac{1}{4}}\implies 11^{\frac{2}{5}-\frac{1}{4}}\implies 11^{\frac{8-5}{20}}\implies 11^{\frac{3}{20}}
\\\\\\
\sqrt[20]{11^3}\implies \sqrt[20]{1331} [/tex]

the answer is 11 to the fifths power :)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE