Respuesta :

The correct statement is that statement that correctly compares the expressions on both sides after both expressions have been simplified. The correct statement is: [tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) < 3.3435 \times 10^4[/tex]

Given that:

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1})[/tex] and [tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}}[/tex]

To determine the correct statement, we simply evaluate both expressions:

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1})[/tex] becomes

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 2.06 \times 10^{-2} \times 1.88 \times 10^{-1}[/tex]

Rewrite as:

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 2.06 \times 1.88 \times 10^{-2} \times 10^{-1}[/tex]

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 3.8728 \times 10^{-2} \times 10^{-1}[/tex]

Apply law of indices

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 3.8728 \times 10^{-2-1}[/tex]

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 3.8728 \times 10^{-3}[/tex]

Also:

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}}[/tex] becomes

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}} = \frac{7.69}{2.3} \times \frac{10^{-2}}{10^{-6}}[/tex]

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}} = 3.3435 \times \frac{10^{-2}}{10^{-6}}[/tex]

Apply law of indices

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}} = 3.3435 \times 10^{-2--6}[/tex]

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}} = 3.3435 \times 10^4[/tex]

At this point, we have:

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) = 3.8728 \times 10^{-3}[/tex] and

[tex]\frac{7.69 \times 10^{-2}}{2.3 \times 10^{-6}} = 3.3435 \times 10^4[/tex]

By comparison:

[tex]3.8728 \times 10^{-3} <3.3435 \times 10^4[/tex]

Hence, the correct statement is:

[tex](2.06 \times 10^{-2})(1.88 \times 10^{-1}) < 3.3435 \times 10^4[/tex]

Read more about simplification at:

https://brainly.com/question/18435083

Answer:

The answer is C i just took the test

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE