Respuesta :
The simplified form of the quantity 4 x squared minus 25 over the quantity 2 x plus 5 is 2x − 5, with the restriction x ≠ −five over 2 and this can be determined by factorizing the numerator.
Given :
The quantity 4 x squared minus 25 over the quantity 2 x plus 5.
The following steps can be used in order to determine the simplified form of the given data:
Step 1 - Write the given data in the mathematical format.
[tex]=\dfrac{4x^2-25}{2x+5}[/tex] ---- (1)
Step 2 - If the given expression is in a fraction then the denominator never be zero that is:
2x + 5 [tex]\neq[/tex] 0
[tex]\rm x \neq -\dfrac{5}{2}[/tex]
Step 3 - Now, simplify the given equation (1).
[tex]=\dfrac{(2x)^2-5^2}{2x+5}[/tex]
[tex]=\dfrac{(2x+5)(2x-5)}{(2x+5)}[/tex]
= (2x - 5)
Therefore, the correct option is A).
For more information, refer to the link given below:
https://brainly.com/question/17082557