Respuesta :

Hello!


Cosec can be represented as csc in this problem.


Identities:

1. [tex] cot 2A [/tex] = [tex] \frac{cos A}{sin A} [/tex]

2. [tex] sin(A - 2A) = -cos(A)sin(2A) + cos(A)sin(2A) [/tex]

3. [tex] sin(A)= \frac{1}{csc(A)} [/tex]


The variables A and 2A, can be changed to different variables.


[tex] \frac{cos A}{sin A} [/tex] - [tex] \frac{cos 2A}{sin 2A} [/tex] = [tex] csc 2A [/tex] (Identity 1)

[tex] \frac{-cos(2A)sin(A) + cos(A)sin(2A)}{(sin(2A)(sinA)} = csc 2A [/tex]

[tex] \frac{sin(-A + 2A) }{sin(2A)sin(A)} [/tex] = [tex] csc 2A [/tex] (Identity 2)

[tex] \frac{1}{sin(2A)} [/tex] = [tex] csc 2A [/tex] (Identity 3)

[tex] \frac{\frac{1}{1}}{csc(2A)} [/tex] = [tex] csc 2A [/tex] (Simplify)

[tex] csc(2A) = csc(2A) [/tex]


The equation, [tex] cot A - cot 2A = cosec 2A [/tex], is a true identity.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE