Respuesta :

Riia

[tex] y=(2x+3)^2 = 4x^2 +12x +9 [/tex]

Taking 4 out from first two terms, we will get

[tex] y=4(x^2+3x)+9 [/tex]

Now we divide the coefficient of x by 2 and add and subtract the square of the result, we will get

[tex] y=4(x^2+3x+\frac{9}{4}-\frac{9}{4})+9 [/tex]

Distributing 4

[tex] y=4(x+\frac{3}{2})^2+9-9 [/tex]

Cancelling 9

[tex] y=4(x+\frac{3}{2})^2 [/tex]

And that's the required standard form.

Answer:

First Part

answer is D (  0 = 4x2 + 12x + 9  )

Second part

a=4

b=12

c=9

Step-by-step explanation:

EDGE 2021

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE