Which expression is equivalent to [4^5/4 4^1/4 / 4^1/2]^1/2 Please quick helppp

[4^(5/4+1/4)]^1/2
= --------------------------
4^(1/2 * 1/2)
[4^(6/4)]^1/2
= ----------------------
4^(1/4)
4^(3/2 * 1/2)
= ----------------------
4^(1/4)
4^(3/4)
= ---------------
4^(1/4)
= 4^(3/4 - 1/4)
= 4^2/4
= 4^1/2
= √4
= 2
Answer is C. 2
Answer:
Step-by-step explanation:
[tex]\left(\dfrac{4^\frac{5}{4}\cdot4^\frac{1}{4}}{4^\frac{1}{2}}\right)^\frac{1}{2}\qquad\text{use}\ a^n\cdot a^m=a^{n+m}\ \text{and}\ \dfrac{a^m}{a^n}=a^{m-n}\\\\=\left(4^{\frac{5}{4}+\frac{1}{4}-\frac{1}{2}\right)^\frac{1}{2}=\left(4^{\frac{6}{4}-\frac{1}{2}}\right)^\frac{1}{2}=\left(4^{\frac{3}{2}-\frac{1}{2}}\right)^\frac{1}{2}=\left(4^{\frac{2}{2}\right)^\frac{1}{2}=\left(4^1\right)^\frac{1}{2}\\\\=4^\frac{1}{2}\qquad\text{use}\ \sqrt[n]{a}=a^\frac{1}{n}\\\\=\sqrt4=2[/tex]