Answer : The two values of 'x' are, 1.192 and -4.192
Step-by-step explanation :
The given expression is,
[tex]x^2+3x-5=0[/tex]
To solve this problem we are using quadratic formula.
The general quadratic equation is,
[tex]ax^2+bx+c=0[/tex]
Formula used :
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
Now we a have to solve the above equation and we get the value of 'x'.
[tex]x^2+3x-5=0[/tex]
a = 1, b = 3, c = -5
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-(3)\pm \sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]
[tex]x=\frac{-3+\sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]
[tex]x=1.192[/tex]
and,
[tex]x=\frac{-3-\sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]
[tex]x=-4.192[/tex]
Therefore, the values of 'x' are 1.192 and -4.192