Respuesta :

x = -(3-sqa(29))/2

x= -(3+sqa(29))/2

decimal form

x = 1.193, -4.1923

Answer : The two values of 'x' are, 1.192 and -4.192

Step-by-step explanation :

The given expression is,

[tex]x^2+3x-5=0[/tex]

To solve this problem we are using quadratic formula.

The general quadratic equation is,

[tex]ax^2+bx+c=0[/tex]

Formula used :

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Now we a have to solve the above equation and we get the value of 'x'.

[tex]x^2+3x-5=0[/tex]

a = 1, b = 3, c = -5

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]x=\frac{-(3)\pm \sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]

[tex]x=\frac{-3+\sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]

[tex]x=1.192[/tex]

and,

[tex]x=\frac{-3-\sqrt{(3)^2-4\times 1\times (-5)}}{2\times 1}[/tex]

[tex]x=-4.192[/tex]

Therefore, the values of 'x' are 1.192 and -4.192

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE