Respuesta :

i think its a but im not sure

Answer:

The recursive formula that is used to represent the same geometric sequence as formula is:

           [tex]a_1=2[/tex]

and [tex]a_n=a_{n-1}\cdot \dfrac{1}{2}[/tex]

Step-by-step explanation:

We are given a formula as:

             [tex]a_n=2\cdot (\dfrac{1}{2})^{n-1}[/tex]

Now, the first term of it is given by:

[tex]a_1=2\times (\dfrac{1}{2})^{1-1}\\\\\\a_1=2\times (\dfrac{1}{2})^0\\\\\\a_1=2[/tex]

Also, [tex]a_2=2\cdot (\dfrac{1}{2})^{2-1}\\\\\\a_2=2\cdot (\dfrac{1}{2})\\\\\\a_2=a_1\cdot \dfrac{1}{2}[/tex]

and similarly we get:

[tex]a_3=2\cdot (\dfrac{1}{2})^{3-1}\\\\\\a_3=2\cdot \dfrac{1}{2}\cdot \dfrac{1}{2}\\\\\\a_3=a_2\cdot \dfrac{1}{2}[/tex]

            Hence, option: C is the correct answer.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE