Given a rectangle with a side of 10m and a dialogue of 26m. Find the perimeter of the rectangle.

To find the longer side, use the Pythagoream theroem. 26m is the hypotenuse.
Pythagoream theorem: a² + b² = c² or c² - a² = b², in which "c" is the hypotenuse, and a and b can be used interchangeably.
c = 26
a = 10
b = b
Plug into corresponding areas.
c² - a² = b²
(26)² - (10)² = b²
Simplify.
26 x 26 = 676
10 x 10 = 100
676 - 100 = b²
b² = 576
Isolate the b. Root both sides
√b² = √576
b = √576
Simplify the root
b = √576
b = 24
The longer side of the rectangle = 24 m
-------------------------------------------------------------------------------------------------------------------
To find the perimeter, use the 2l + 2w = P formula.
w = width = 10
l = length = 24
P = perimeter
2(24) + 2(10) = P
Simplify
48 + 20 = P
Add
68 = P
-------------------------------------------------------------------------------------------------------------------
68 meters is your perimeter
-------------------------------------------------------------------------------------------------------------------
hope this helps
Hi!
So rectangles have 4 right angles and the diagonal allows the rectangle to make 2 right traingles. Now we need to find the longer length and that can be found using the pythagorean theorem.
a^2 + b^2 = c^2
you have the b side and the c side but not the a
a^2 + 10^2 = 26^2
a^2 + 100 = 676
Now subtract 100 from both sides
a^2 = 576
dont forget to square root
a = 24
now find the perimeter
24 + 24 + 10 + 10 = 68
The perimeter is 68!
Hope this helps!