Respuesta :
Answer:
A. Rotate 360°
Step-by-step explanation:
We are required to find the transformation mapping an image onto itself.
According to the options, we have,
A. Rotate 360°.
Rotating 360° changes (x,y) to (x,y).
That is, this transformation will map the image onto itself.
B. Reflect across the y-axis, and then reflect across the x-axis.
Reflecting (x,y) across y-axis gives the point (-x,y).
Reflecting (-x,y) across x-axis gives the point (-x,-y).
So, this transformation maps (x,y) to (-x,-y).
C. Rotate 270° counterclockwise, and then reflect it across the x-axis.
Rotating 270° counter-clockwise changes (x,y) to (y,-x).
Reflecting (y,-x) across x-axis gives the point (y,x).
So, this transformation maps (x,y) to (y,x).
D. Rotate 90° counterclockwise, and then rotate 180°.
Rotating 90° counter-clockwise changes (x,y) to (-y,x).
Rotating (-y,x) by 180° counter-clockwise gives (y,-x).
So, this transformation maps (x,y) to (y,-x).
Hence, transformation in option A maps the image onto itself.