Respuesta :
Answer is: the δe for octane combustion is -5112.42 kJ/mol.
Chemical reaction: C₈H₁₈ + 25/2O₂ → 8CO₂ + 9H₂O.
m(C₈H₁₈) = 3.80 g; mass of octane.
n(C₈H₁₈) = m(C₈H₁₈) ÷ M(C₈H₁₈).
n(C₈H₁₈) = 3.8 g ÷ 114 g/mol.
n(C₈H₁₈) = 0.033 mol; amount of octane.
cp= 6.18 kJ/°C, specific heat capacity of the bomb calorimeter.
Qcal = ΔT · cp.
Qcal = 27.3°C · 6.18 kJ/°C.
Qcal = 168.71 kJ; amount of heat absorbed.
ΔE = Qcal ÷ n(C₈H₁₈).
ΔE = 168.71 kJ ÷ 0.033 mol.
ΔE = 5112.42 kJ/mol.
Answer:
[tex]-4.33 * 10^3 \frac{kJ}{mol}[/tex]
Explanation:
To determine the correct answer, use the equations [tex]q_{cal} = C_{cal}[/tex] x ΔT and [tex]q_{cal} = - q_{rxn}[/tex]. ΔE is equal to [tex]q_{rxn}[/tex] divided by the number of moles of octane that reacted.
[tex]q_{cal} = - q_{rxn}[/tex]
[tex]-C_{cal} \times \Delta T=-\frac{6.20 kJ}{\textdegree C} \times 26.9 \textdegree C=-167 kJ[/tex]
[tex]4.40 \text{g} \ \text{octane} \times \frac{1 \text{mol \ octane}}{114.23 \text{g \ octane}}=3.85 \times 10^{-2}\ \text {mol \ octane}[/tex]
[tex]\Delta E = \frac{-167kJ }{3.85\times10^{3}\text{mol \ octane}}=-4.33\times 10^3 \ \text{kJ/mol}[/tex]