As we know that acceleration due to gravity is given by
[tex]a_g = \frac{GM}{R^2}[/tex]
Part a)
Inside the sphere
[tex]\frac{a_g}{5} = \frac{Gm}{(r)^2}[/tex]
[tex]\frac{GM}{5R^2}= \frac{G\frac{M*\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3}}{(r)^2}[/tex]
[tex]\frac{GM}{5R^2}= G\frac{M*r}{R^3}[/tex]
[tex] 5R^2 = \frac{R^3}{r}[/tex]
[tex] r = R/5[/tex]
[tex] r = 0.7 km[/tex]
Part b)
Now for a point outside the sphere the gravity is [tex]a = /frac{a_g}{5}[/tex]
[tex]\frac{a_g}{5} = \frac{GM}{(r)^2}[/tex]
[tex]\frac{GM}{5R^2}= \frac{GM}{(r)^2}[/tex]
[tex](r) = \sqrt5 R[/tex]
[tex]r = (\sqrt5 )*3.5 km[/tex]
[tex]r = 7.83 km[/tex]