Respuesta :
We're not given the choices but we don't need them.
The only way this problem is tractable to a middle or high schooler is if the polynomial is perfect cube; a little thought yields
[tex]f(x) = (x-2)^3[/tex]
To find the inverse let's call f(x) x and call x y and solve for y.
[tex]x = (y-2)^3[/tex]
[tex]y-2 = \sqrt[3]{x}[/tex]
[tex]y = 2 + \sqrt[3]{x}[/tex]
Answer:
[tex]f^{-1}(x)=\sqrt[3]{x}+2[/tex]
Step-by-step explanation:
Given: [tex]f(x)=x^3-6x^2+12x-8[/tex]
We need to find inverse of the f(x).
It is cubic equation. First we make perfect cube of f(x).
[tex]a^3-3a^2b+3ab^2-b^3=(a-b)^3[/tex]
[tex]x^3-6x^2+12x-8\Rightarrow x^3-3\cdot x^2\cdot 2+3\cdot x\cdot 2^2-2^3[/tex]
[tex]a\rightarrow x[/tex]
[tex]b\rightarrow 2[/tex]
[tex]f(x)=(x-2)^3[/tex]
Now, we find the inverse of f(x).
Step 1: set f(x)=y
[tex]y=(x-2)^3[/tex]
Step 2: switch x and y
[tex]x=(y-2)^3[/tex]
Step 3: solve for y
[tex]\sqrt[3]{x}=y-2[/tex]
[tex]y=\sqrt[3]{x}+2[/tex]
Hence, The inverse of f(x) is [tex]\sqrt[3]{x}+2[/tex]