Respuesta :
Let
x---------> the rate of the plane flying north
y--------> the rate of the plane flying south
we know that
x=2y-----> y=(x/2)---------> equation 1
rate=distance/time
1) Find the distance at 2:00p.m------> plane flying north
2:00p.m-10:00a.m--------> 14:00-10:00=4 hours
distance 1=rate*time------> distance 1=x*4
2) Find the distance at 2:00p.m------> plane flying south
2:00p.m-12:00p.m--------> 14:00-12:00=2 hours
distance=rate*time------> distance 2=y*2
substitute equation 1 in the formula above
distance2=(x/2)*2-----> distance2=x
we know that
distance 1+distance 2=1,800 miles
so
4x+x=1,800------> 5x=1,800-------> divide by 5 both sides
x=360 miles/hour
y=360/2------> y=180 miles hour
therefore
the answer is
the rate of the plane flying north is 360 miles/hour
the rate of the plane flying south is 180 miles hour
Rate of plane flying north is 360 miles/hour.
Rate of plane flying south is 180 miles/hour.
Step-by-step explanation:
Given :
Let 'a' be the rate of plane flying north and 'b' be the rate of plane flying south.
a = 2b ---- (1) (given)
Calculation :
We know that
[tex]\rm rate = \dfrac{distance}{time}[/tex]
So time taken by both the plane to flying 1800 miles apart is 4 hours and 2 hours respectively.
Therefore,
[tex]\rm d_1 = 4a[/tex] ---- (2)
[tex]d_2= 2b[/tex] ----- (3)
[tex]d_1 +d_2=1800[/tex] ----- (4) (Given)
From equation (2), (3) and (4)
[tex]4a +2b = 1800[/tex] ---- (5)
From equation (1) and (5)
[tex]8b +2b = 1800[/tex]
[tex]\rm b = 180 \; miles/hour[/tex]
From equation (1) we get
a = 360 miles/hour
Rate of plane flying north is 360 miles/hour.
Rate of plane flying south is 180 miles/hour.
For more information, refer the link given below
https://brainly.com/question/18667145?referrer=searchResults