Answer:
[tex]j=4[/tex]
[tex]k=10[/tex]
Step-by-step explanation:
we have that
[tex]8x^{3}-125=(2x-5)(jx^{2} +kx+25)[/tex]
Applying the distributive property to the right side
[tex](2x-5)(jx^{2} +kx+25)=2jx^{3}+2kx^{2} +50x-5jx^{2}-5kx-125[/tex]
Combine like terms
[tex]=2jx^{3}+(2k-5j)x^{2} +(50-5k)x-125[/tex]
Compare with [tex]8x^{3}-125[/tex]
so
[tex]2j=8[/tex] -------> [tex]j=4[/tex]
[tex](2k-5j)=0[/tex] ------> substitute the value of j and solve for k
[tex]2k=5(4)[/tex] ------> [tex]k=10[/tex]