Consider the sequence defined recursively by a1=−2, a2=2, an+1=8an−1−2an. we can use matrix diagonalization to find an explicit formula for an.
a. find a matrix that satisfies [anan+1]=m[an−1an]

Respuesta :

[tex]\begin{cases}a_1=-2\\a_2=2\\a_{n+1}=-2a_n+8a_{n-1}&\text{for }n\ge2\end{cases}[/tex]

From the given starting values, we have

[tex]\begin{bmatrix}a_3\\a_2\end{bmatrix}=\begin{bmatrix}-2&8\\1&0\end{bmatrix}\begin{bmatrix}a_2\\a_1\end{bmatrix}[/tex]

and more generally, the [tex](n+1,n)[/tex]-th term pair is captured by

[tex]\begin{bmatrix}a_{n+1}\\a_n\end{bmatrix}=\begin{bmatrix}-2&8\\1&0\end{bmatrix}\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}[/tex]

so that

[tex]\mathbf M=\begin{bmatrix}-2&8\\1&0\end{bmatrix}[/tex]

We notice that

[tex]\begin{bmatrix}a_{n+1}\\a_n\end{bmatrix}=\mathbf M\begin{bmatrix}a_n\\a_{n-1}\end{bmatrix}=\mathbf M^2\begin{bmatrix}a_{n-1}\\a_{n-2}\end{bmatrix}=\cdots=\mathbf M^{n-1}\begin{bmatrix}a_2\\a_1\end{bmatrix}[/tex]

which is to say that the explicit formula for [tex]a_n[/tex] is given by the dot product of the second row of [tex]\mathbf M^{n-1}[/tex] with [tex]\begin{bmatrix}a_2&a_1\end{bmatrix}^\top[/tex].

First we diagonalize [tex]\mathbf M[/tex]. It has eigenvalues [tex]\lambda[/tex], where

[tex]\det(\mathbf M-\lambda\mathbf I)=\begin{vmatrix}-2-\lambda&8\\1&-\lambda\end{vmatrix}=0\implies\lambda_1=2,\lambda_2=-4[/tex]

with corresponding eigenvectors [tex]\vec\eta[/tex], where

[tex](\mathbf M-2\mathbf I)\vec\eta_1=\mathbf0\implies\vec\eta_1=\begin{bmatrix}2\\1\end{bmatrix}[/tex]
[tex](\mathbf M+4\mathbf I)\vec\eta_2=\mathbf0\implies\vec\eta_2=\begin{bmatrix}-4\\1\end{bmatrix}[/tex]

Then we have

[tex]\mathbf M=\mathbf S^{-1}\mathbf{DS}[/tex]

where [tex]\mathbf S[/tex] is the matrix whose columns are [tex]\vec\eta_1[/tex] and [tex]\vec\eta_2[/tex] and [tex]\mathbf D[/tex] is the diagonal matrix whose non-zero entries are the eigenvalues of [tex]\mathbf M[/tex]. So

[tex]\mathbf M=\begin{bmatrix}2&-4\\1&1\end{bmatrix}^{-1}\begin{bmatrix}2&0\\0&-4\end{bmatrix}\begin{bmatrix}2&-4\\1&1\end{bmatrix}[/tex]

which gives

[tex]\mathbf M^{n-1}=\begin{bmatrix}2&-4\\1&1\end{bmatrix}^{-1}\begin{bmatrix}2^{n-1}&0\\0&(-4)^{n-1}\end{bmatrix}\begin{bmatrix}2&-4\\1&1\end{bmatrix}[/tex]

From here, you would just need to determine the bottom row of the final matrix product.

The matrix satisfy the [tex]\left[\begin{array}{ccc}a_{n+1}\\a_n\\\end{array}\right] =M \left[\begin{array}{ccc}a_n\\a_{n-1}\end{array}\right][/tex] is [tex]M^{n-1}=\left[\begin{array}{ccc}2&-4\\1&0\end{array}\right]^{-1}\left[\begin{array}{ccc}2^{n-1}&0\\0&(-1)^{n-1}\end{array}\right]\left[\begin{array}{ccc}2&-4\\1&1\end{array}\right][/tex]

Step-by-step explanation:

Given: Consider the sequence defined recursively by [tex]a_1=-2,\;a_2=2,\;a_{n+1}=-2a_n+8a_{n-1}\;\rm{for},\; n\geq2[/tex].

According to question,

From the given values: [tex]\left[\begin{array}{ccc}a_3\\a_2\\\end{array}\right] =\left[\begin{array}{ccc}-2&8\\1&0\end{array}\right] \left[\begin{array}{ccc}a_2\\a_1\end{array}\right][/tex]

And generally we can write for [tex](n+1,\;n)[/tex]: [tex]\left[\begin{array}{ccc}a_{n+1}\\a_n\\\end{array}\right] =\left[\begin{array}{ccc}-2&8\\1&0\end{array}\right] \left[\begin{array}{ccc}a_n\\a_{n-1}\end{array}\right][/tex]

So, here

[tex]M=\left[\begin{array}{ccc}-2&8\\1&0\end{array}\right][/tex]

So using diagonalise equation of the matrix using eigen values we can write: [tex]M=S^{-1}DS[/tex]

[tex]M=\left[\begin{array}{ccc}2&-4\\1&0\end{array}\right]^{-1}\left[\begin{array}{ccc}2&0\\0&-4\end{array}\right]\left[\begin{array}{ccc}2&-4\\1&1\end{array}\right][/tex]

Which

[tex]M^{n-1}=\left[\begin{array}{ccc}2&-4\\1&0\end{array}\right]^{-1}\left[\begin{array}{ccc}2^{n-1}&0\\0&(-1)^{n-1}\end{array}\right]\left[\begin{array}{ccc}2&-4\\1&1\end{array}\right][/tex]

Therefore, the matrix satisfy the [tex]\left[\begin{array}{ccc}a_{n+1}\\a_n\\\end{array}\right] =M \left[\begin{array}{ccc}a_n\\a_{n-1}\end{array}\right][/tex] is [tex]M^{n-1}=\left[\begin{array}{ccc}2&-4\\1&0\end{array}\right]^{-1}\left[\begin{array}{ccc}2^{n-1}&0\\0&(-1)^{n-1}\end{array}\right]\left[\begin{array}{ccc}2&-4\\1&1\end{array}\right][/tex].

Learn more about diagonalise matrix and eigen value here:

https://brainly.com/question/15850936?referrer=searchResults

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE