Answer:
[tex]h=6\ in[/tex]
Step-by-step explanation:
step 1
Find the volume of the old can
The volume of the can is equal to
[tex]V=\pi r^{2} h[/tex]
we have
[tex]r=3/2=1.5\ in[/tex] ----> the radius is half the diameter
[tex]h=4\ in[/tex]
substitute
[tex]V=\pi (1.5)^{2}(4)[/tex]
[tex]V=9\pi\ in^{3}[/tex]
step 2
Find the volume of the bigger can
Multiply the old volume by 1 1/2
[tex]1\frac{1}{2}=1.5[/tex]
so
[tex]V=(1.5)*9\pi\ in^{3}[/tex]
[tex]V=13.5\pi\ in^{3}[/tex]
step 3
Find the height of the bigger can
we have
[tex]V=13.5\pi\ in^{3}[/tex]
[tex]r=1.5\ in[/tex]
substitute in the formula
[tex]13.5\pi=\pi (1.5)^{2}(h)[/tex]
[tex]h=13.5/(1.5)^{2}[/tex]
[tex]h=6\ in[/tex]