Respuesta :
[tex]\dfrac{x^{2}+2x-35}{x^{2}+4x-21}=\dfrac{(x-5)(x+7)}{(x-3)(x+7)}=\dfrac{x-5}{x-3}[/tex]
The second selection is appropriate:
Divide the numerator and denominator by (x + 7).
The second selection is appropriate:
Divide the numerator and denominator by (x + 7).
Answer:
"Divide the numerator and denominator by (x + 7)"
B is correct.
Step-by-step explanation:
Given: [tex]\dfrac{x^2+2x-35}{x^2+4x-21}[/tex]
We need to simplify the expression into simplest form.
First we factor each numerator and denominator
[tex]\text{Numerator: }x^2+2x-35[/tex]
[tex]\Rightarrow x^2+7x-5x-35[/tex]
[tex]\Rightarrow (x^2+7x)+(-5x-35)[/tex]
[tex]\Rightarrow x(x+7)-5(x+7)[/tex]
[tex]\Rightarrow (x+7)(x-5)[/tex]
[tex]\text{Denominator: }x^2+4x-21[/tex]
[tex]\Rightarrow x^2+7x-3x-21[/tex]
[tex]\Rightarrow (x^2+7x)+(-3x-21)[/tex]
[tex]\Rightarrow x(x+7)-3(x+7)[/tex]
[tex]\Rightarrow (x+7)(x-3)[/tex]
We can see (x+7) is common at numerator and denominator.
Divide by (x+7) at numerator and denominator..
Hence, "Divide the numerator and denominator by (x + 7)" to get simplest form.