Answer:
Solution-
∵ cotx = (cosx÷sinx)
∴ The given expression can be written as
sinx + cotx·cosx = sinx + ( cosx÷ sinx).cosx
⇒sinx +(cosx)²÷sinx = [ (sinx)² + (cosx)²] ÷ sinx
⇒ 1÷ sinx = cosecx = cscx
using the identity (sinx)²+(cosx)²=1
∴ option B is correct.