which equation of the least squares regression line most closely matches the data set?

note: the variable x represents the years after 1972.

x y
1972 -28
1974 8
1976 39
1978 62
1980 98

a. y = 0.06x - 28
b. y = 15.3x - 25.4
c. y = 15.3x + 25.4
d. y = 1.03x - 56

Respuesta :

B. y^ = 15.3x - 25.4

Answer:

b. y = 15.3 x - 25.4

Step-by-step explanation:

Here, x represents the number of years after 1972,

Thus, the table of variables will be,

x         0                   2                    4                   6                    8

y        -28                8                    39                 62                 98        

By the above table,

We have,

[tex]\sum x = 20[/tex]

[tex]\sum y = 179[/tex]

[tex]\sum x^2=120[/tex]

[tex]\sum xy = 1328[/tex]

Since, the linear regression equation is,

y = b + ax

Where,

[tex]b=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2}[/tex]

[tex]a=\frac{(\sum y) (\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2}[/tex]

By substituting the values,

We get, b = -25.4 and a = 15.3

Thus, the required linear regression equation is,

y = 15.3 x - 25.4

Option b is correct.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE