Respuesta :
Answer:
b. y = 15.3 x - 25.4
Step-by-step explanation:
Here, x represents the number of years after 1972,
Thus, the table of variables will be,
x 0 2 4 6 8
y -28 8 39 62 98
By the above table,
We have,
[tex]\sum x = 20[/tex]
[tex]\sum y = 179[/tex]
[tex]\sum x^2=120[/tex]
[tex]\sum xy = 1328[/tex]
Since, the linear regression equation is,
y = b + ax
Where,
[tex]b=\frac{n(\sum xy)-(\sum x)(\sum y)}{n(\sum x^2)-(\sum x)^2}[/tex]
[tex]a=\frac{(\sum y) (\sum x^2)-(\sum x)(\sum xy)}{n(\sum x^2)-(\sum x)^2}[/tex]
By substituting the values,
We get, b = -25.4 and a = 15.3
Thus, the required linear regression equation is,
y = 15.3 x - 25.4
⇒ Option b is correct.