Respuesta :

The lateral area of the pyramid is given by:
 A = (4) * (1/2) * (b) * (h)
 Where,
 b: base of the triangle
 h: triangle height
 Substituting values we have:
 A = (4) * (1/2) * (16) * (8 * tan (60))
 A = 443 in ^ 2
 Answer:
 
the lateral area of pyramid ABCDE is:
 
A = 443 in ^ 2

Answer:

The lateral area of pyramid ABCDE is [tex]256\sqrt{3}[/tex] in².

Step-by-step explanation:

According to the properties of trigonometry,

[tex]\tan \theta=\frac{perpendicular}{base}[/tex]

[tex]\tan (60^{\circ})=\frac{height}{8}[/tex]

[tex]8\tan (60^{\circ})=height[/tex]

The area of a triangle is

[tex]A=\frac{1}{2}\times base \times height[/tex]

[tex]A=\frac{1}{2}\times 16 \times 8\tan (60^{\circ})[/tex]

[tex]A=8\times 8\sqrt{3}[/tex]

[tex]A_1=64\sqrt{3}[/tex]

Lateral surface area of a pyramid is the sum of area of all 4 triangles. So, the lateral area of pyramid ABCDE is

[tex]A=4\times A_1[/tex]

[tex]A=4\times 64\sqrt{3}[/tex]

[tex]A=256\sqrt{3}[/tex]

Therefore the lateral area of pyramid ABCDE is [tex]256\sqrt{3}[/tex] in².

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE