The distribution function of a random variable (x) is given by (F(t)=begincases 0 & if t<-1 0.3 & if 1 ≤ t < 2 0.5 & if 2 ≤ t < 3 1 & if 3 ≤ t endcases).
A.) Find the expected value of (x) and of (|x|+x).
a) (E[x] = 2.25), (E[|x|+x] = 2.5)
b) (E[x] = 1.5), (E[|x|+x] = 3)
c) (E[x] = 0.5), (E[|x|+x] = 1.5)
d) (E[x] = 2), (E[|x|+x] = 2.25)