Consider the vector space 3P 3 of cubic polynomials {33+22+1+0∣(0,1,2,3)∈4}{c 3t 3+c2t 2+c 1t+c 0∣(c 0,c 1,c 2,c 3)∈R 4 } with the scalar product (,)=∫−11()()(p,q)=∫ −11 p(t)q(t)dt. Let Φ:4→3Φ:R 4→P 3 be:
A) An isomorphism.
B) An endomorphism.
C) An automorphism.
D) A homomorphism.