If a third order, linear, homogeneous, constant coefficients differential equation has e²ᵗ+sin(t) as a solution, then the solution of the differential equation that satisfies y(0)=1,y′(0)=2,y′′(0)=0, is given by
A. y(t)=1/5 e²ᵗ+4/5cos(t)+58sin(t)
B. y(t)=4/5 e²ᵗ+1/5 cos(t)+52sin(t)
C. y(t)=8/5 e²ᵗ−3/5 cos(t)−56sin(t)
D. y(t)=1/2 ²ᵗ+ 1/2cos(t)+sin(t)
E. y(t)= 3/4 e²ᵗ+1/4cos(t)+21sin(t)